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Abstract. The relevant quantity in the comparison of the absolute positron energy levels in 
different materials is the sum of the internal electron and positron chemical potentials, i.e. 
the sum of the Fermi level and the bottom of the lowest positron band relative to a common, 
well-defined reference energy. This sum is defined as the positron affinity. The positron 
affinity reflects the preference of the positron for different components in heterostructures 
made of different materials and the preference between the host matrix and precipitates in 
alloys. Moreover, the affinity is closely related to the positron work function andpositronium 
formation potential which are important parametersin the slow-positron-beam experiments. 
We have determined the positron affinity for the alkaline and alkaline-earth metals, 3d-, 
4d-, and 5d-transition metal series, and for some metals on the right in the Periodic Table. 
The diamond structure semiconductors are also considered. The determination is based on 
the self-consistent electron structure calculations and the subsequent calculation of the 
positron band structure within the local-density approximation. The trends are studied and 
interpreted along the different columns and rows of the Periodic Table. The results are also 
compared with available experiments. 

1. Introduction 

The experimental methods based on positron annihilation have a large number of 
applications in the different subfields of solid state physics [l, 21. For example, positron 
lifetime and Doppler-broadening spectroscopies have been extensively used to study 
defects in crystal structures. The angular correlation techniques are capable of deter- 
mining Fermi-surface topologies. The properties of solid surfaces and the near-surface 
regions have recently been investigated by slow-positron-beam techniques. One of 
the key prerequisites for the proper interpretation of the experimental results is the 
understanding of the properties of delocalised positrons in perfect lattices. These kinds 
of properties include the positron energetics, i.e. the positron energy level relative to 
the vacuum, and its variation in a solid between regions of different structure or chemical 
composition. The positron diffusion properties also belong to this category. 

The relative positions of the energy levels of delocalised positrons between different 
materials in contact are determined by one number, the positron affinity. We define it 
as the sum of the internal electron and positron chemical potentials. The electron part 
takes care of the electrostatic energy difference due to the dipole layer near the interface. 
Note that the positron affinity defined this way will be a negatiue number, and a larger 
negative value means a stronger preference of the positron in the material in question. 
Moreover, the affinity gives directly the positronium (Ps) formation potential and, 
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combined with the electron work function, the positron work function with respect 
to the vacuum level. These two quantities are very important, directly measurable 
parameters in slow-positron-beam experiments. Finally, the volume dependence of 
the positron affinity (the deformation potential) can be used to estimate the positron 
diffusion constant. 

The calculations of this work are based on the density-functional theory in the local- 
density approximation (LDA) for exchange and correlation [3], First, the self-consistent 
electron structures are calculated by the linear-muffin-tin orbital method (LMTO) within 
the atomic-spheres approximation (ASA) [4,5].  Thereafter the positron potential is 
determined within LDA for the electron-positron correlation effects, and the positron 
wave function and energy eigenvalue are calculated also using LMTO-ASA. The Fermi 
level and the bottom of the lowest positron band obtained define the internal electron 
and positron chemical potentials. The great benefit of ASA is a simple absolute energy 
scale determined by the Coulomb potential due to spherical charge densities of the 
atomic spheres [6]. In the case of FCC and BCC metals the spheres are in fact neutral. This 
feature of ASA has also been employed in estimating the electron deformation potentials 
for semiconductors [7] and the band offsets for semiconductor heterojunctions [6]. 

The main purpose of this work is to provide a consistent positron affinity data base 
including a large number of elemental metals. This data base can be used as a guideline 
in the interpretation of experimental results. It also enables a fruitful study of different 
trends seen along the columns and rows of the Periodic Table. Especially, it is interesting 
to analyse the trends in the positron affinity resulting from the interplay between the 
electron and positron chemical potentials, which reflect differences in the one-particle 
potentials and also different aspects of the one-particle band structures. Moreover, the 
comparison of the theoretical and experimental Ps formation potentials gives an idea 
about the validity of the approximations (nominally LDA) made. The power of the 
theoretical method has already been shown in a previous paper [SI based on similar 
calculations for some metals and semiconductors, but the trends were not studied 
systematically in that work. 

2. Theory 

The calculation methods and the theory of the electron and positron energy levels are 
carefully explained in the previous publication [SI. Therefore we give here only the main 
points. In the LDA of the density-functional theory the effective potential for the electrons 
is written in the form 

U e f f ( 4  = Q)W + uxc( .<r>> (1) 

where q ( r )  is the Coulomb potential due to the nuclei and electron charge density and 
U,, is the LDA exchange-correlation potential [9], which depends on the electron density 
n(r).  The effective potential determines the electron density in turn, and the ensuing 
self-consistency problem is solved in this work by the LMTO-ASA method. The method 
gives the electron-band structure, the most important parameter of which for the present 
application is the Fermi level. The potential sensed by the positron is constructed as 

V +  (r)  = - ~ ) ( r )  + Vcorr(n(r))  ( 2 )  

where Q? is the same Coulomb potential as in equation (l), and V,,,, is the correlation 
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potential describing the energy lowering due to the electron pile-up near the positron. 
The correlation potential V,,,, is treated within LDA based on the many-body calculations 
for a delocalised positron in a homogeneous electron gas [lo]. In the case of semi- 
conductors the correlation effects are slightly reduced reflecting the imperfect screening 
[ll]. The positron band structure is also calculated by the LMTO-ASA method. 

In the LMTO-ASA method the potentials and energy levels are given with respect to 
the so-called crystal zero level, which is defined as the zero of the Coulomb potential 
due to the nuclei and the electron density of the infinite solid. In the ASA the lattice 
is divided into spheres centred around nuclei and in the case of diamond-structure 
semiconductors considered in this work also around the tetrahedral interstitial sites. The 
spheres fill the whole space and the electron density and the potentials are approximated 
to be spherical inside these spheres. Therefore the calculation of the Coulomb potential 
and the determination of the crystal zero is easy. For example, in the case FCC and BCC 
metals, for which all the spheres are similar neutral Wigner-Seitz spheres, the Coulomb 
potential due to every sphere vanishes just outside its surface. 

The form of the potentials and the different energy levels for electrons and positrons 
in bulk crystals are shown in figure 1. The vertical scale corresponds the illustrative 
example of aluminium. The maximum of the effective potential occurs in the interstitial 
region (in ASA on the surface of the Wigner-Seitz sphere). Because the Coulomb 
potential vanishes there, the maximum is below the crystal zero by the exchange- 
correlation potential u,,(no) calculated from the interstitial electron density no (the 
electron density on the surface of the Wigner-Seitz sphere). The valence band width is 
about 12 eV and the Fermi level is slightly below the crystal zero, so that the chemical 
potential ,U- is a small negative number. The electron energy levels with respect to 
vacuum are determined by the potential difference A due to the surface dipole charge, 
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which arises because the electron density of the Wigner-Seitz cells relaxes near the 
surface from that for a bulk cell. As a result the dipole potential is measured with respect 
to the crystal zero. The electron work function q- is of course the distance from the 
Fermi level to vacuum. In the case of positrons the minimum of the total potential in 
bulk occurs in the interstitial region. This minimum is below the crystal zero by the 
correlation potential ucorr(no). The positron chemical potential corresponds to the bot- 
tom of the lowest positron energy band, and is about 3 eV below the crystal zero. Outside 
the surface in vacuum the total positron potential has a wide minimum due to the 
correlation effects, which further away from the surface form the image potential [2]. 
The image potential vanishes towards the vacuum level, which is below the crystal zero 
by the amount of the surface dipole potential A ,  The surface dipole is slightly larger in 
magnitude than the positron chemical potential, and therefore the positron energy level 
in bulk is higher than in vacuum, i.e. the positron work function is negative. 

Figure 2 shows the behaviour of the energy levels when two different metals are in 
contact. The vertical scale corresponds to the junction between A1 and Zn. The Fermi 
levels equalise themselves via the formation of an interface dipole with the potential 
difference A = p! - p! .  As aresult the difference between the lowest positron energies 
on the different sides of the interface is given by 

AE$B = E $  - E: = p!! - p.1” + p$ - py.  

A +  = p-  + p + .  

(3) 

(4) 

This equation shows that it is useful to define the positron affinity as the sum 

A+ is then a specific bulk property for every material. As a consequence the difference 
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of the positron energies between materials in contact is the difference in the positron 
affinities. 

The important quantities measured in slow-positron-beam experiments [2] are also 
related to the positron affinity. The positronium formation potential E ~ ,  is defined as the 
negative of maximum kinetic energy of Ps atoms ejected into vacuum from the sample. 
Ps is not stable in bulk metals or semiconductors, but is formed near the surface when a 
delocalised positron is leaving the solid. The principle of energy conservation gives 

cp, = q -  + q +  - 6.8eV ( 5 )  
because the extraction of a thermalised positron and a Fermi level electron cost in energy 
the sum of the work functions, but at the same time the Ps binding energy of 6.8 eV is 
gained. According to figure 1 we can further write 

ep, = (-p- + A) + (-p+ - A) - 6.8eV 

= -A+ - 6.8 eV. 

The positron work function q+ is another important experimental quantity. It depends 
on the surface via the surface dipole potential. Its ab-initio determination would thus 
require the calculation of the self-consistent electron density for the surface. However, 
we can eliminate D by using the experimental electron work function 9- as 

q +  = -p+ - A = - p +  - p -  - q -  = - A +  - q-. ( 7 )  
Thus also the positron work function can be expresed in terms of the positron affinity 

The positron diffusion constant D in a perfect solid is determined by scattering from 
longitudinal acoustical phonons [ 121. D depends on the strength of the positron-phonon 
interaction which can be described by the deformation potential Ed [13]: 

A+. 

where m* is the positron effective mass, T the absolute temperature, and (cii) the 
elastic constant associated with longitudinal waves and averaged over the directions of 
propagation. The deformation potential describes the relative change of the positron 
energy level due to small variations (a phonon) of the atomic density in the bulk and is 
defined as 

where E+ is the positron energy level, which is measured e.g. with respect to the crystal 
zero of the undeformed lattice. During the density variations small charge transfers 
induce potentials which oppose the changes in the internal chemical potential for elec- 
trons and balance the Fermi level into a unique value in the whole sample. These induced 
potentials affect also on the positron energy level in the same way as in figure 2 for two 
types of metals in contact. As a result, the deformation potential can be calculated as 

Thus it depends on the volume derivative of the positron affinity. 
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3. Results and discussion 

The crystal structures and the Wigner-Seitz radii used in the calculations are shown in 
figure 3. The Wigner-Seitz radii correspond to the room temperature. For convenience 
of calculation, the hexagonal structures were approximated by FCC with the same atomic 
density. We do not expect this substitution to affect strongly the calculated electron and 
positron chemical potentials, especially in cases when the c/a-value of the hexagonal 
structure is close to the ideal one. This approximation is also used in some previous 
works [15] in which the cohesive properties of transition metals have been studied. 

The calculated chemical potentials and their volume derivatives in selected cases are 
given in table 1. The electron data is in agreement with the calculations by Andersen et 
al [4]. The volume dependencies and the ensuing estimates for the diffusion constant 
have been carefully considered in the previous paper [8], and they are not discussed 
here. In this paper the emphasis is put on the positron affinity and its trends along the 
columns and rows of the Periodic Table. The positron affinities are shown in figure 4. It 
is seen that the affinity is always negative and its magnitude rises from the centre of the 
transition metal series towards left and right. a-Sn has the largest afinity in magnitude, 
which reflects the large open interstitial region in the diamond structure. The positron 
work function and the positronium formation potential would according to equations 
(6) and ( 7 )  have large positive values in the case of a-Sn. Therefore a-Sn is predicted to 
be for positrons a very efficient trap, from which positrons do not escape as free positrons 
or as Ps-atoms. The smallest affinity in magnitude is found in the case of the heavy FCC- 
metal Os. Thus, according to equation (7)  Os would have a large negative positron work 
function, which means that it would be an efficient positron moderator for the slow- 
positron beams. 

The trends of the positron affinity along the 3d-, 4d- or 5d-series can be understood 
by studying the electron and positron chemical potentials separately. The chemical 
potentials are shown along the 3d-series in figure 5 .  In the beginning of the given row 
bonding d-type orbitals are being filled. As a result, cohesion increases and the Wigner- 
Seitz radius decreases rapidly. At the same time the electron chemical potential, i.e. the 
Fermi level, rises because of the filling of the d-levels. The rise of the positron chemical 
potential is due to decrease of the open interstitial volume seen by the positron. At the 
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Table 1. Calculated chemical potentials and their volume derivatives for electrons (p- and 
V(ap-/av)) and positrons (p+ and V(ap,/av)). 

Li 
Be 
Na 
Mg 
AI 
Si 
K 
Ca 
s c  
Ti 
V 
Cr 
Mn 
Fe 
CO 
Ni 
c u  
Zn 
Ge 
Rb 
Sr 
Y 
Zr 
Nb 
MO 
Tc 
Ru 
Rh 
Pd 

Cd 
Sn 
c s  
Ba 
Lu 
Hf 
Ta 
W 
Re 
os 
Ir 
Pt 
Au 
Pb 

Ag 

-2.36 
+0.87 
-2.32 
-1.89 
-0.76 
-0.54 
-2.25 
-2.26 
-1.77 
-1.29 
-1.01 
-0.35 
-1.15 
-1.16 
-1.14 
-1.55 
-1.59 
-1.48 
-0.60 
-2.23 
-2.14 
-1.76 
-1.11 
-0.81 
-0.04 
+0.04 
-0.19 
-1.02 
-2.35 
-2.14 
-1.92 
-1.28 
-2.21 
-2.07 
-1.58 
-1.05 
-0.69 
+0.33 
+0.43 
+0.44 
+0.04 
-1.37 
-1.86 
-1.58 

-5.00 
-3.98 
-4.80 
-4.29 
-3.65 
-6.41 
-4.80 
-4.14 
-3.33 
-2.77 
-2.43 
-2.27 
-2.57 
-2.68 
-2.77 
-2.91 
-3.22 
-3.76 
-6.19 
-4.74 
-4.27 
-3.55 
-2.87 
-2.12 
-1.88 
-1.71 
-1.73 
-2.08 
-2.69 
-3.22 
-3.86 
-6.32 
-4.73 
-4.06 
-3.32 
-2.65 
-1.94 
-1.64 
-1.40 
-1.57 
-1.57 
-2.26 
-2.73 
-3.98 

-1.67 

-1.61 
-3.57 
-6.02 
-7.51 
-1.23 
-2.66 
-4.96 
-6.64 
-8.09 
-9.51 
-8.18 
-8.35 
-8.36 
-8.13 
-7.39 
-6.123 
-7.64 

-9.15 
-11.3 

-9.15 
-7.23 
-5.78 

-9.40 
-12.0 

-12.2 
- 10.2 
-4.81 

-0.25 

-0.98 
-1.07 
-1.83 
+1.32 
-1.32 
-1.40 
-1.86 
-2.35 
-2.24 
-2.49 
-2.51 
-2.47 
-2.54 
-2.36 
-2.06 
-1.99 
+1.02 

-2.78 
-3.06 

-3.00 
-2.25 
-2.07 

-2.92 
-3.00 

-3.00 
-3.80 
-1.58 

end of the given series antibonding d-type orbitals are being filled causing a decreasing 
trend in the cohesion and a slight increase in the Wigner-Seitz radius. The electron 
chemical potential decreases because of the lowering of the centre of the d-bands as a 
function of the atomic number. The antibonding orbitals are more localised than the 
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bonding ones. Therefore the screening of the nucleus improves when they are being 
filled. As a result, the open volume seen by positron increases and the positron chemical 
potential sinks towards the end of the d-series. 

The trends along the columns are also interesting. According to figure 4, within 
the transition-metal columns in the middle (V-, Cr-, Mn-, Fe-, and CO-columns) the 
magnitude of the positron affinity decreases monotonically in the downward direction, 
whereas in the columns on the right (Ni-, and Cu-columns) or on the left (Sc-column) 
the magnitude of the affinity has maximum in the 4d-series. The separation to electron 
and positron chemical potentials in the case of V- Cr-, Ni-, and Cu-columns is shown in 
figure 6. It can be concluded that the maximum of the magnitude of the positron affinity 
for the Ni- and Cu-columns reflect the drop of the Fermi level. This is connected with 
the increase of the lattice constant and with the drop of the centre of the d-bands 
compared to the late 3d-elements. The 4d- and 5d-transition metals, which belong to 
the same columns, have nearly equal lattice constants. Therefore the Fermi level rises 
in all cases when going down from the 4d-metal to the adjacent 5d-metal. In the case of 
the metals belonging to the columns in the middle, the d-bands are being filled and they 
do not drop when going down from a 3d-metal to the 4d-metal. As a consequence, the 
Fermi level rises monotonically when going downwards in these columns. The positron 
chemical potential reflects the changes in open volume seen by the positron. In the sense 
of the open volume, the increase of the lattice constant between the adjacent 3d- and 
4d-elements is compensated by the increase of the core region. The 5d-cores are even 
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Cu columns of the Periodic Table. 

larger than the 4d-cores. The result is that the positron chemical potential increases 
monotonically in the downward direction for all transition metal columns. This com- 
pletes the discussion of the trends in the positron affinity for the transition metals. 

The Ps formation potential cp, is given by equation ( 6 ) .  According to figure 4 cp, is 
negative for most of the metals, meaning that spontaneous positronium emission is 
possible, after a thermalised positron has diffused from bulk to the surface. However 
cp, is positive for alkali metals, which means that spontaneous positron emission is not 
possible there. The theoretical values for the semiconductors Si and Ge are close 
to zero: spontaneous Ps emission should be possible from Ge but not from Si. The 
experiments [16,17] have shown emission from both semiconductors. However, this is 
not necessarily in disagreement with theory, because surface electron states having 
energy eigenvalues in the band gap and a large density on the surface can have a strong 
influence on positronium formation. 

The positron affinities have been measured directly for eight different transition 
metals by Gidley and Frieze [18], who used the reemitted-positron spectroscopy. Their- 
results are copared with the present calculations in figure 7(a). For the early BCC metals 
W, MO, Ta, and Nb the experimental affinities are slightly larger in magnitude than the 
theoretical ones, whereas for the late FCC metals CO, Ni, Cu, and Pd the situation is 
reverse. The discrepancies are less than 1 eV. It is satisfying to note that the experimental 
and theoretical orderings within the FCC and BCC groups are the same. The positron 
affinities can be deduced also from the measured positronium formation potentials. This 
is done in figure 7(6), where the results from different sources are compared with the 
present theoretical values. The agreement is even better than in figure 7 ( a ) .  However, 
the ordering of Cu and Au is different for theory and experiment. 

Slow-positron-beam techniques have been used to study the properties of hetero- 
structures formed by depositing thin metal films on metal substrates [22]. The positron 
affinities given in figure 3 are very useful numbers for analysing data from these kinds 
of studies. For example, if a few layers of Cu are evaporated on Ag substrate the 
positronium emission out of the sample is strongly reduced, whereas an Ag film on Cu 
does not cause such an effect. These features can be directly predicted from figure 4, 
because the positron affinity for Ag is 0.55 eV larger in magnitude than for Cu. A Cu 
layer on Ag forms a potential barrier for thermalised positrons in the Ag substrate which 
then cannot freely diffuse to the surface. Also in the case when the evaporated material 
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Figure 7. Comparison of the theoretical and experimental positron affinities. (a) The exper- 
imental values are measured directly by the reemitted-positron spectroscopy. (b)  The exper- 
imental valuesare deduced from the measuredpositronium formation potentialsby equation 
(6) .  For AI, Au, Cu, Ni, and Pb the experimental valuesare from (191, for Cr from (201, and 
for W from (211. 

has a larger positron affinity in magnitude the potential step between different materials 
will cause wave-mechanical reflection of the positron and a reduction in the number of 
positrons reaching the surface. This effect should be manifest at low temperatures. 

Another application of the positron affinity data is connected with the investigations 
of precipitates in the alloys by positron annihilation methods [23]. For example, alu- 
minium alloys prepared by adding a few percent of Mg, Si, Cu, Zn, or Ag have been 
extensively studied. In these alloys precipitation process results in regions with a high 
concentration (over 50%) of the added element. Positrons are trapped by this kind of 
precipitates if they have a positron affinity larger in magnitude than the one for the bulk 
alloy. For the latter it is a good approximation to use the positron affinity for pure AI, 
because the dopant concentration is relatively low. In principle, the positron affinity for 
the precipitate should be calculated by using the actual lattice structure and composition 
of the precipitate, but already the value interpolated from the corresponding bulk 
material affinites is rather sufficient as will be discussed below. The main result is that 
the precipitate should be larger than a certain critical size in order for the trapping to 
occur. This size can be approximated from the calculated positron affinities: assuming 
that the precipitate can be described by a three-dimensional spherical potential well with 
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Figure 9. Same as figure 8 but for AI, -xZnx .  

the depth of the positron affinity difference AA, there is one bound state if the radius of 
the precipitate is larger than the critical radius 

r ,  -‘I 5.8 a,/-, (11) 

where a. is the Bohr radius. For example, if one applies this to the 100% Zn precipitates 
in Al, the critical radius is 5.4 a,. This means that precipitates should contain at least 
-6 Zn atoms. 

In order to describe the precipitates more accurately, we have calculated the positron 
affinities for ordered All -,Mg, and Al,-,Zn, alloys as a function of the composition x. 
All-,Mg, represents a case for which the atomic numbers of the constituents are nearly 
equal, but the lattice constants of the pure constituent metals are quite different. In the 
case of All-,Zn, the situation is reverse i.e. the lattice constants are nearly equal, but 
the constituents belong to different rows of the Periodic table. In the calculations we 
have assumed the Fcc-lattice for the alloy and the lattice constant is obtained by a linear 
interpolation from the pure metal lattice constants. The results are shown in figures 8 
and 9. The changes in the positron affinity are determined mainly by the change in the 
electron chemical potential. In the case of the Al,-,Zn, alloy the positron chemical 
potential is in fact nearly constant. The main result is that the positron affinity can be 
determined rather accurately by a linear interpolation. Moreover, an interesting detail 
given by the calculations is the positron distribution in the two different atomic spheres 
in the binary alloys. The spheres have equal radii. In the All-,Mg, alloy positron is 
found with the same probability in the Al- andMg-spheres, whereasin All -,Zn,positron 
has a preference to Zn-spheres. For example, when x = 0.5 the probabilities are 53% 
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and 47% for the Zn- and Al-spheres, respectively. This tendency should be reflected 
e.g. in the measured core-annihilation contributions: because of the larger core size of 
Zn, the annihilation rate with the Zn-core electrons should be larger than that with Al- 
core electrons. 

Stott and Kubica [22] have studied positron states in alloys by the positron pseu- 
dopotential method. Their approach is to some extent related to the present calculations. 
They studied the x = 0.5-alloys and calculated the positron pseudopotential differences 
between the constituent atoms in the alloy. The pseudopotential difference gives the 
positron preference for the one type of atom over the other type and it is related to the 
difference of the positron affinity for bulk materials defined in this paper. Namely, the 
pseudopotential differences calculated by Stott and Kubica consisted of three parts: (i) 
the difference in the Wigner-Seitz energy (-zero-point energy), (ii) the effects due to 
charge transfer between the different cells, which were approximated by the difference 
in the internal chemical potential for electrons in the two pure metals, (iii) the difference 
in the correlation potential were calculated using LDA with the average electron density 
in the cell of the pure metal. All the contributions were calculated using the.average 
Wigner-Seitz radius of the atoms in the alloy. Using the calculated volume derivatives, 
our positron affinity values can be made to correspond to the average Wigner-Seitz 
radius of the alloy in question. The affinity differences obtained in this way agree 
qualitatively with the pseudopotential differences, 

4. Conclusions 

We have performed a systematic study of the ground state energetics for positrons in 
undefected elemental solids. The positron affinities calculated provide a consistent data 
base, which supports the interpretation of the experimental results obtained by the slow- 
positron-beam techniques or by the conventional positron annihilation methods. In this 
work we explain the trends seen in the positron affinities by the help of the variations of 
the electron and positron chemical potentials. The results are also compared with the 
available experimental values, and the agreement is good: the differences are less than 
-10% of the total range of affinity values in different solids studied. 
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